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In air traffic management, conflict prevention information refers to the guidance ma-
neuvers, which if taken, ensure that an aircraft’s path is conflict-free. These guidance
maneuvers take the form of changes to track angle or ground speed. Conflict prevention
information may be assembled into prevention bands that advise the crew on maneuvers
that should not be taken. Unlike conflict resolution systems, which presume that the
aircraft already has a conflict, conflict prevention systems show conflicts for any maneu-
ver, giving the pilot confidence that if a maneuver is made, then no near-term conflicts
will result. Because near-term conflicts can lead to safety concerns, strong verification
of information correctness is required. This paper presents a mathematical framework to
analyze the correctness of algorithms that produce conflict prevention information incorpo-
rating an arbitrary number of traffic aircraft and with both a near-term and intermediate-
term lookahead times. The framework is illustrated with a formally verified algorithm for
2-dimensional track angle prevention bands.

Nomenclature

Gamber set of track angle bands without a loss of separation within time Tred , but within time Tamber

Ggreen set of track angle bands without a loss of separation within time Tamber

Gred set of track angle bands with a loss of separation within time Tred

G<T set of track angles with a loss of separation within time T
Go,i<T set of track angles with a loss of separation within T between the ownship and traffic aircraft
s ownship aircraft position relative to the traffic aircraft, s = so − si
si initial position of the traffic aircraft
so initial position of the ownship aircraft
Tamber intermediate-term lookahead time
Tred near-term lookahead time
T generic lookahead time
vi initial velocity of the traffic aircraft
vo initial velocity of the ownship aircraft
v′o new velocity vector for the ownship. We seek this vector.

I. Introduction

Different types of information are used to help aircraft maintain separation standards. At the lowest
level, information is needed to indicate if separation standards will be violated in the near future—called a
conflict. Once a conflict is detected, then conflict resolution information may be used to create a new path
∗Research Engineer, NASA Langley Research Center, m/s 130, Hampton, VA 23681, USA.
†Professor, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
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in which there is no conflict. Most future airspace concepts propose using computer algorithms to produce
this information. Both conflict detection and resolution algorithms usually work in a pair-wise fashion: the
ownship aircraft and one other aircraft. In situations where traffic density is low, this pair-wise assumption
does not significantly impact operations. However, when traffic density is high, resolving one conflict may
result in new near-term conflicts—called secondary conflicts. These secondary conflicts may be nearer (in
time) than the original conflict being addressed; so, the safety of the aircraft depends on avoiding these
conflicts. More generally, any time an aircraft maneuvers there is the potential to create new conflicts, which
must be avoided both for safety and efficiency.
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Figure 1. Compass Rose with
Conflict Prevention Bands

Information to avoid potential conflicts involves analyzing possible ma-
neuvers of the aircraft. There are two basic approaches to tacticala air-
borne conflict prevention: probing and bands. In the maneuver probing
approach, the pilot or controller provides an individual maneuver, which
is tested to ensure the proposed trajectory is conflict-free. In the bands
approach, large groups of possible maneuvers are analyzed and the pilot
is presented with ranges of track angles or ground speeds, which, if taken,
will result in conflict-free trajectories. Alternatively, these ranges could
represent avoidance or “don’t go” zones. These ranges of guidance ma-
neuvers are referred to as conflict-prevention information. The National
Aerospace Laboratory (NLR) refers to their conflict prevention capability
as Predictive Airborne Separation Assurance System or Predictive ASAS.3

The NLR approach provides two sets of bands: near-term conflicts (within
3 minutes) are shown in red, while intermediate-term conflicts (within 5
minutes) are shown in amber as illustrated in figure 1. We do not di-
rectly analyze the NLR system, but we do use it to characterize input
and output information from a typical conflict prevention system.

Conflict prevention information may be presented directly to a pilot
or controller or it may be supplied to another automated system. In either case, since aircraft safety may be
threatened by incorrect conflict prevention information, a rigorous analysis of this information is needed. This
paper provides this analysis. As with all such analysis, certain assumptions are made including ignoring the
impact of aircraft performance, weather, or special use airspace; planned future work involves relaxing these
assumptions. The correctness of this information is established through a mathematical characterization and
analysis of the conflict-free regions for ground speed and track angles changes. The theory presented in this
paper has been formalized and verified in the Prototype Verification System (PVS)6 and is publicly available.b

In this paper, we use standard mathematical notation to make the paper accessible to a wider audience. To
illustrate the general mathematical framework for the analysis of conflict prevention information, we present
a 2-dimensional algorithm for track angle prevention bands. For completeness, a 2-dimensional algorithm for
ground speed preventions bands is presented in the appendix. Both algorithms have been formally verified
correct. We are currently working on candidate algorithms for 3-dimensional prevention bands.5

Although conflict-prevention systems have been used in several human-in-the-loop simulation experi-
ments1,2, 4 and their functionality has been described in other papers,3,7 we believe this is the first published
analysis of such information. The primary focus of this work is conflict-prevention systems for airborne
operation, but there is nothing inherent in this approach which precludes use in ground-based systems.

II. Problem Assessment

In this section, we analyze conflict prevention information to discover its essential elements, then we show
how these essential elements may be analyzed mathematically for safety. Conflict prevention information
consists of collections of guidance maneuvers displayed in one-dimensional ranges. These ranges define
changes to the ownship’s velocity in either vertical speed, ground speed, or track angle. In the interest of
space, this paper only describes changes to track angle in a 2-dimensional space; prevention bands for all the
parameters in a 3-dimensional airspace are addressed in a related technical report.5

aWe use the term tactical to mean a system which only uses near-term predictions of aircraft behavior without incorporating
pilot or controller intent.

bhttp://research.nianet.org/fm-at-nia/ACCoRD.
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A. Colors of Track Angles

If an aircraft restricts its movement based on all aircraft within its surveillance range, then many relatively
safe maneuvers will be unnecessarily avoided. Instead, only those aircraft that will cause near-term conflicts
should be included in the computation of conflict prevention information.

We follow the approach from Predictive ASAS3 by introducing two parameters, Tred and Tamber, which
divide the set of conflicts based on their nearness (in time) to a loss of separation. Predictive ASAS uses
3 minutes for Tred and 5 minutes for Tamber; our analysis leaves these as parameters. Thus, the track-only
guidance maneuvers may be partitioned into three sets of track angles, which are denoted: Ggreen, Gamber,
Gred. These “colors” of sets mean that all of the track angles within these sets maintain a specific property
as follows: the green maneuvers mean that if the ownship flies one of these paths, then there will be no loss
of separation within time Tamber; the amber maneuvers mean that the if the ownship flies one of these paths,
then there will be no loss of separation before Tred, but there will be a loss of separation before Tamber;
finally, the red maneuvers mean that if the ownship flies one of these paths, then there will be a loss of
separation before time Tred.

Suppose we had a way to determine the set track angles that have a loss of separation within time T ,
denoted G<T . Then since Tred < Tamber, we may define our sets of track angles in terms of this new set:

Gred = G<Tred

Gamber = G<Tamber
− G<Tred

Ggreen = {α | 0◦ ≤ α < 360◦} − G<Tamber

This observation simplifies the analysis, because now we only need to analyze one set, G<T .

B. Multiple Aircraft

We observe that each aircraft’s contribution to the set G<T is independent of all other traffic; thus, the
problem neatly divides into a series of aircraft pairs: the ownship and each traffic aircraft. If we use Go,i<T to
represent the set of track angles which cause a loss of separation within time T between traffic aircraft i and
the ownship o, then the set of track angles for all traffic is then be formed by

G<T =
⋃

i∈traffic

Go,i<T

This observation simplifies the analysis again, because now we only need to find the track angles which
cause a conflict between two aircraft, denoted by the set Go,i<T . Before we examine the set Go,i<T in detail, we
introduce some mathematical modeling concepts.

III. Modeling Considerations

The position and velocity vectors of the ownship are denoted by so and vo, respectively, and the position
and velocity vectors of the traffic aircraft are denoted by si and vi, respectively. The components of each
position and velocity vector are scalar values, so they are represented without the bold-face font, for example
so = (sox, soy). For notational convenience, for a given vector v, we use v2 = v · v, v⊥ = (vy,−vx),
||v|| =

√
v2, and 0 = (0, 0).

As typical of state-based approaches, speeds are presumed to be ground-relative. The use of ground speed
was chosen to correspond to position and velocity reports coming from Automated Dependent Surveillance
(ADS-B) systems. The impact of differences between ground speed and air speed is left for future work. As
a simplifying assumption, we regard the position and velocity vectors as accurate and without error. We
also assume the aircraft are moving with respect to the ground, i.e., vo 6= 0 and vi 6= 0. However, relative
velocity vectors can be 0, e.g., when both aircraft fly parallel to each other at the same ground speed.

In a 2-dimensional airspace system, the separation criterion is specified as a minimum horizontal sep-
aration D (in much of the airspace D is 5 nautical miles). It is convenient to develop the theory using a
translated coordinate system where the traffic aircraft is at the center of the coordinate system and does
not move, and the ownship is located at so − si and, until a maneuver is taken, the aircraft move relative to
each other with velocity vo − vi. Henceforth, we denote the initial relative position of the aircraft by s, i.e.,
s = so − si.
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Figure 2. Translated Coordinate
System

For example in figure 2, the blue (upper) dot represents the ownship
with its velocity vector and the magenta vector (lower) is the velocity
vector of the traffic. In the translated coordinate system, these vectors
combine to form a single relative vector, also shown in blue in figure 2. The
separation criterion defines a disc of radius D around the traffic aircraft.
This disc is called the protected zone.

In figure 2, the relative velocity vector (blue) defines a half-line that in-
tersects the protected zone, meaning that in some future time the ownship
will enter the protected zone around the traffic aircraft. If the intersection
point occurs at a time less or equal than T the aircraft are in conflict. In this figure, the green vectors show
possible resolution vectors.

Formally, a 2-dimensional conflict occurs if there exists a time 0 ≤ t ≤ T when the aircraft will lose
separation, i.e., the positions so + tvo and si + tvi are within a horizontal distance D of each other. In the
relative coordinate system, we define

Definition 1 (conflict?).

conflict?(s,vo,vi) ≡ ∃ 0 ≤ t ≤ T : (s + t(vo − vi))2 < D2. (1)

In this definition, we model future aircraft positions as a linear projection of the aircraft’s velocity from its
current position. An aircraft’s accelerations—both positional and angular—are not modeled. The distance
between two aircraft at time t is equal to ||s + t(vo − vi)||.

With the specification of a conflict in definition 1, we now develop a function to determine if a conflict
exists. It is not difficult to prove that if vo 6= vi the minimum separation between two aircraft occurs at the
time of closest approach τ = −s · (vo − vi)/(vo − vi)2. Since conflicts are predicted for times 0 ≤ t ≤ T , we
have to consider the minimum distance between the aircraft during that interval of time. In particular, if
τ ≤ 0 or if vo = vi, then the minimum separation between the aircraft is achieved at time 0. Similarly, if
τ ≥ T , then the minimum separation between the aircraft occurs at time T . Therefore, the aircraft minimum
separation during the time interval [0, T ] is defined as follows.

Definition 2 (Minimum distance function, Ω).

Ω(s,vo,vi) ≡

{
||s|| if τ ≤ 0 or vo = vi,
||s + min(τ, T )(vo − vi)|| otherwise.

We can use this minimum distance function to completely characterize the predicate conflict?.

Definition 3 (Conflict detection function, cd2d).

cd2d(s,vo,vi) ≡ Ω(s,vo,vi)2 < D2.

Theorem 1 (Completeness of cd2d). cd2d(s,vo,vi) returns true if and only if conflict?(s,vo,vi) holds.

IV. Pair-wise Set of Track Angles

We now investigate Go,i<T , the set of ownship track angles that result in a loss of separation with aircraft i
within time T . The minimum separation as function of the ownship’s track angle α, denoted Ωα, for a given
relative position s, traffic’s velocity vi, and an ownship ground speed of ||vo|| corresponds to

Ωα ≡ Ω(s, ||vo||∠α,vi) (2)

where m∠α = (m sinα,m cosα). It may appear that the sin and cos are reversed in this expression, but
recall that α is a track angle defined as clockwise degrees from north, instead of the mathematical convention
of counterclockwise from east.

If we plot the function Ωα, then we will get a chart somewhat similar to figure 3. We observe that the
points that cross the line labeled D (the horizontal separation minimum), are precisely the transition points
between angles which should or should not be included in the set Go,i<T . By figure 3, only those angles where
the minimum distance is beneath the line D are in this set.
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Figure 3. Example of Minimum Separation as a Function of Ownship Track Angle

Figure 3 implies that the function Ωα is continuous and indeed it is; however the proof of this result is
beyond the scope of this paper. The continuity of this function allows us to characterize intervals of track
angles with a single angle. We observe this standard result from the mathematics of continuous functions.

Theorem 2 (Intermediate Value). If f is continuous on the open interval (xl, xu) and f(xl) = 0, f(xu) = 0
and there are no other zeros between xl and xu, then f is either positive at every point in the interval or
negative everywhere in the interval.

By this theorem, all angles between the zeros of the distance function Ωα−D will all share the same conflict
status. Since the transition points precisely correspond to the zeros of this function, we may select any angle
between two consecutive transition points and the result of cd2d on that point determines the conflict status
of all of the angles between the transition points.

Our challenge to define set Go,i<T now involves finding all the transition points. Henceforth, we consider
that the aircraft are initially separated, i.e., s2 ≥ D2. If this is not the case, then separation has already
been lost; so, set Go,i<T is the whole range of track angles since no maneuver can avoid a preexisting loss of
separation.

V. Transition Points

As described in the last section, our problem of analyzing the correctness of a conflict prevention bands
algorithm comes down to finding all the transition track angles—the zeros in theorem 2. We note that an
algorithm that finds a superset of transition points is still correct. However, for algorithmic efficiency we
would like to ignore all non-transition points.

Finding all the zeros of the function Ωα−D has shown to be difficult as it requires complex trigonometric
reasoning. Rather that following a trigonometric approach, we use an algebraic method where we first find
all the vectors v′o such that

v′2o = v2
o, (3)

Ω(s,v′o,vi)
2 = D2, (4)

for given vectors s,vo,vi. Equation (3) guarantees that v′o has the same norm, i.e., ground speed, as vo.
This ensures that v′o is only a rotation of vo. Equation (4) ensures that v′o is a zero of Ωα−D. Then we can
get the transition angles by track(v′o) where track is the angle of v′o measured in clockwise degrees from
north in the range [0, 360).c

Using theorem 1 and the definition of conflict?, equation (4) may be solved in two ways: (a) the
half-line s + t(vo − vi) does not intersect the protected zone for any value of t ≥ 0 or (b) it intersects the
protected zone at a time t ≥ T . The first case determines a set of transition points defined by vectors v′o such
that the relative velocity vector v′o − vi yields a tangent trajectory to the protected zone. These transition
points are called horizontal transition points. The second case determines a set of a set of transition points
defined by vectors v′o such that the relative vector v′o − vi yields a trajectory that intersects the protected
zone at exactly time T . These transition points are called lookahead time transition points. In the sections
below, we discuss how to compute these two types of transition points.

cWe assume that track(0) = 0.
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A. Horizontal Transition Points

The horizontal transition points are those values of the ownship’s track angle that produce a relative velocity
vector that is tangent to the protected zone, as indicated by the green vectors in figure 2. The P-ASAS
report3 describes an interesting situation where a single aircraft pair produces two prohibited regions. We
have formally verified that there are at most four different angles that define a trajectory tangent to the
protected zone.

Horizontal transition points are determined by vectors v′o such that the half-line s + t(v′o−vi), for t ≥ 0,
is tangent to the protected zone and v′2o = v2

o. In order to find such vectors v′o we proceed in several steps.
First, we note that there are at most two half-lines that are tangent to the protected zone. Then, for each
one of these half-lines, we find a non-null vector u that lies in the half-line and points in the same direction.
This vector will simplify the analysis provided it is only determined by the geometry of the encounter—the
aircraft velocities are not involved. The vector u characterizes the half-line ku, for k ≥ 0. Therefore, the
vectors v′o that determine the horizontal transition points are those that satisfy (3) and for some k ≥ 0,

ku = v′o − vi. (5)

Thus, we can find a v′o provided we find the tangent vector u and k. Finding these two quantities is the
subject of the next two sections. The third section collects these results into a function.

1. Finding Tangents

Since s2 ≥ D2, we consider two cases: (a) s2 = D2 and (b) s2 > D2. In the first case, any vector that is
perpendicular to s lies in a half-line that is tangent to the protected zone. Therefore, we define the vectors
uε = εs⊥, for ε = ±1. In the second case, for each one the two half-lines, we define a point on the protected
zone that is tangent on the line from s. Since there are at most two half-lines that are tangent to the
protected zone, there are at most two such points, which we call Qε.

Definition 4 (Qε).

Qε(s) ≡ D2

s2
s + ε

D
√

s2 −D2

s2
s⊥,

for ε± 1.

Then, we define the vectors uε = Qε(s) − s. These two vectors completely characterize the two half-lines
that are tangent to the protected zone when s2 > D2.

We combine the two cases into the function tangent_line to compute the tangent vectors.

Definition 5 (tangent line).

tangent line(s, ε) ≡ IF s2 = D2 THEN

ε s⊥

ELSE

Qε(s)− s

ENDIF

Lemma 1 (tangent line). The relative velocity vector v yields a trajectory that is tangent to the protected
zone if and only if v = k tangent_line(s, ε) for some k ≥ 0.

2. Magnitude of the Tangents

From lemma 1, we know that for any k ≥ 0, the relative velocity vector k tangent_line(s, ε) yields a
trajectory that is tangent to the protected zone. Now we must find a k ≥ 0 such that v′2o = v2

o when
k tangent_line(s, ε) = v′o − vi. Using equation (3), equation (5) can be transformed into a quadratic
equation in k

(ku + vi)2 = v2
o, (6)

which has at most two solutions for k. The function trk_only_line solves this quadratic equation.
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Definition 6 (trk only line).

trk only line(u,vo,vi, ε) ≡ LET a = u2,

b = 2(u · vi),
c = v2

i − v2
o,

∆ = b2 − 4ac IN

IF ∆ ≥ 0 THEN LET k =
−b+ ε

√
∆

2a
IN 〈k, ku + vi〉

ELSE 〈0,0〉

The function trk_only_line returns the pair 〈0,0〉 when there are no solutions for k and v′o.

Lemma 2 (Completeness of trk only line). A number k and a non-null vector v′o satisfy equations (3)
and (5) if and only if 〈k,v′o〉 = trk_only_line(u,vo,vi, ε).

3. Transition Points from Tangents

Using lemmas 1 and 2, we have that the horizontal transition points are exactly defined by the vectors v′o
that satisfy

〈k,v′o〉 = trk_only_line(tangent_line(s, ε1),vo,vi, ε2), (7)

for k ≥ 0, ε1 = ±1, ε2 = ±1. We observe that this equation uses ε1 and ε2, each may be either −1 or +1;
thus, there are four possible solutions to this equation.

Combining these results, we define

Definition 7 (trk line).

trk line(s,vo,vi, ε1, ε2) ≡ LET 〈k,v′o〉 = trk only line(tangent line(s, ε1),vo,vi, ε2) IN
IF k ≥ 0 THEN v′o

ELSE 0

The function trk_line returns the vector 0 when there are no solutions for v′o.

Theorem 3 (Completeness of trk line). A non-null vector v′o that satisfies equation (3) and whose half-
line s + t(v′o − vi), for t ≥ 0, is tangent to the protected zone if and only if v′o = trk_line(s,vo,vi, ε1, ε2)
for some ε1 = ±1, ε2 = ±1.

B. Lookahead Time Transition Points

T

Figure 4. Lookahead Time Tran-
sition Points

We now consider ways to use the lookahead time to ignore those aircraft
that are “too far” away. First, we find the velocity vectors where the
ownship will touch the protected zone at precisely the lookahead time, as
illustrated by figure 4.

Lookahead time transition points are determined by vectors v′o that
satisfy three equations: equation (3) along with

(s + T (v′o − vi))2 = D2, (8)
(s + T (v′o − vi)) · (v′o − vi) ≤ 0. (9)

Equation (3) states that v′o has the same norm as vo, equation (8) states
that the ownship is at the border of the protected zone at time T , and
equation (9) states that immediately after time T the ownship enters the
protected zone.

Solutions to equations (3) and (8) correspond to the intersection of two circles, which may have zero,
one, two, or infinite solutions. We first consider the special case of infinite solutions.
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1. Special Case

First we consider the case where there is an infinite number of solutions. For the remainder of this section
we will assume s,vo,vi satisfy trk_special_case?.

Definition 8 (trk special case?).

trk_special_case?(s,vo,vi) ≡ s = Tvi and v2
o =

D2

T 2
. (10)

Within this special case and given equation (3), then equation (8) is satisfied. Next, we have formally proven
the following result

Lemma 3 (Special Case). Equation (9) holds if and only if ¬conflict?(s,v′o,vi).

By lemma 3, we no longer need to solve (9) but only a restricted instance of it

(s + T (v′o − vi)) · (v′o − vi) = 0, (11)

which has at most two solutions. To solve equation (11), we transform it into the equivalent form:

vi · v′o −
D2

T 2
= 0, (12)

In our mathematical development, we have defined functions to solve these kinds of equations. In particular,
we have found,

Lemma 4 (Completeness of trk only dot). Let a,b′ be non-null vectors and e > 0.

a · (b′ − c) = e and b2 = b′2 if and only if b′ = trk_only_dot(a,b, c, e, ε)

where,

trk only dot(a,b, c, e, ε) ≡ LET 〈k,b′〉 = trk only line(a⊥,b, c +
e

a2
a, ε) IN

b′,

provided a 6= 0, e > 0, and ε = ±1.

We can cast equation (12) in the form of lemma 4; so, the lookahead transitions points for the special case
are exactly defined by the vectors v′o = trk_only_dot(vi,vo,0, D

2

T 2 , ε) for ε = ±1.

2. General Case

Now we consider the case of vectors s,vo,vi that do not satisfy trk_special_case?(s,vo,vi). In this
case, there are at most two solutions to equations (3) and (8). To find these solutions, we note that when
equation (3) holds, equation (8) can be written as

w · (v′o − vi) = e, (13)

where w = s− Tvi and e = (D2−s2−T 2)(v2
o−v2

i )
2T .

As in the special case, equation (13) can be resolved using the function trk_only_dot. Using lemma 4, the
lookahead transition points for the general case are exactly defined by the vectors v′o that satisfy equation (9)
and

v′o = trk_only_dot(w,vo,vi, e, ε), (14)

for ε = ±1.
Combining this result with the special case we define,
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Definition 9 (trk circle).

trk circle(s,vo,vi, ε) ≡ IF trk special case?(s,vo,vi) THEN

trk only dot(vi,vo,0,
D2

T 2
, ε)

ELSE

LET v′o = trk only dot(s− Tvi,vo,vi,
(D2 − s2 − T 2)(v2

o − v2
i )

2T
, ε) IN

IF (s + T (v′o − vi)) · (v′o − vi) ≤ 0 THEN

v′o
ELSE

0

ENDIF

ENDIF

The function trk_circle returns the vector 0 when there are no solutions for v′o.

Theorem 4 (Completeness of trk circle).

• Case trk_special_case?(s,vo,vi): A non-null vector v′o satisfy equations (3), (8), and (12) if and
only if v′o = trk_circle(s,vo,vi, ε) for some ε = ±1.

• Case ¬trk_special_case?(s,vo,vi): A non-null vector v′o satisfy equations (3), (8), and (9) if and
only if v′o = trk_circle(s,vo,vi, ε) for some ε = ±1.

VI. Track Angle Prevention Bands Algorithm

In this section, we provide the mathematical basis that guarantee the correctness of the track angle
prevention bands algorithm. First, we define a set of transition vectors and a set transition angles as follows:

V ≡ {v′o 6= 0 | (v′o = trk line(s,vo,vi, ε1, ε2) for some ε1 = ±1, ε2 = ±1) or
(v′o = trk circle(s,vo,vi, ε) for some ε = ±1)}

A ≡ {α |α = track(v′o) for some v′o ∈ V}.

An open interval (α1, α2) is a track angle band if it does not contain transition points, i.e., 0 ≤ α1 ≤ α2 < 360
and for all β ∈ A : β 6∈ (α1, α2). We have formally proven the basic correctness result for track angle conflict
prevention information, theorem 5.

Theorem 5 (Completeness of Track Angle Bands). Let (α1, α2) be a track angle band and let α ∈ (α1, α2).

• cd2d(s, ||vo||∠α,vi) returns true if and only if for all γ ∈ (α1, α2) : conflict?(s, ||vo||∠γ,vi),

• cd2d(s, ||vo||∠α,vi) returns false if and only if for all γ ∈ (α1, α2) : ¬conflict?(s, ||vo||∠γ,vi).

The proof of theorem 5 involves the fact that the function Ωα is continuous, the Intermediate Value
theorem (theorem 2), theorems 1, 3, and 4, and the fact that the set A contains all the transition track
angles.

Based on theorem 5, we propose the following algorithm that computes Go,i<T . The algorithm first con-
structs a list that contains all the elements in A. Then, the elements 0 and 360 are added and the list is
sorted. Next, the list is pair-wise iterated to get each band and the cd2d algorithm is used on the mid-point
of the band to determine if the band should be in the set Go,i<T . In this algorithm, we are not making any
special attempt to handle implementation concerns such as floating point round-off errors.
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Definition 10 (Pair-wise Algorithm for Track Angle Prevention Bands).

trk bands(s,vo,vi) ≡
angle[0]:= track(trk line(s,vo,vi,−1,−1));
angle[1]:= track(trk line(s,vo,vi,−1,+1));
angle[2]:= track(trk line(s,vo,vi,+1,−1));
angle[3]:= track(trk line(s,vo,vi,+1,+1));

angle[4]:= track(trk circle(s,vo,vi,−1));
angle[5]:= track(trk circle(s,vo,vi,+1));

angle[6]:= 0;
angle[7]:= 360;

sort(angle);

Go,i<T := ∅;
FOR EACH αi, αi+1 IN angle

LET α = (αi + αi+1)/2 IN

IF cd2d(s, ||vo||∠α,vi) THEN

Go,i<T := Go,i<T ∪ (αi, αi+1);
ENDIF

RETURN Go,i<T ;

For efficiency, we could remove from the list angle the points where the functions trk_line and
trk_circle return the vector 0 because this vector does not determine a transition point. However, since
track(0) is assumed to be 0, the proposed algorithm is correct.

VII. Conclusions

The mathematics underlying conflict prevention systems is more subtle than expected. Instead of a
trigonometric analysis that yields fourth-order polynomial equations, a vector-based approach is developed.
We have found a clean decomposition of the problem. First the problem is divided along the dimensions
of ground speed and track angle. Next, the problem is divided into near-term and intermediate-term time
horizons. Then the problem may be reduced from an N-aircraft problem, to a pair-wise problem. Since the
maximum number of transition points is fixed, this pair-wise division of the problem results in an algorithm
that scales linearly with the number of traffic aircraft.

In this paper, we have focused on a 2-dimensional prevention bands algorithm for track angle. Techniques
in this paper have been used to address the ground speed dimensions of conflict prevention information too.
The major distinction between the mathematical development for these dimensions and those presented
in this paper is that different transition points are used. For completeness, a 2-dimensional ground speed
prevention band algorithm is presented in the appendix. We have formally verified the correctness of the
mathematical basis of these algorithms. Due to safety concerns associated with incorrect information from
a conflict prevention system, we believe this further step of a formal verification is justified.

An open question is should a 2-dimensional algorithm be used or a 3-dimensional one. This question
cannot be answered formally, but rather is based on pilot acceptance. Would a pilot, looking at a horizontal
display, expect that separation must occur only in the horizontal dimension? If so, then a 2-dimensional
algorithm is preferred. In any case, an extension of this work to 3-dimensional algorithms is work in progress.5

Extending this analysis is not straightforward. First, we need a new definition of the minimum distance
function Ω that characterizes 3-dimensional conflicts. Since in a 3-dimensional space the protected zone is a
cylinder rather than a sphere a distance function based on 3-dimensional Euclidean distance does not seem
to be appropriate. Furthermore, we need to find the new transition points added by the vertical dimension
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and to prove that we have found all of them. These issues add considerable complexity to the formal proofs.
Beyond these developments, we also intend to use the mathematics developed in this paper as a foundation

for evaluating the traffic complexity and to develop techniques for down-selecting solutions from conflict
detection and resolution algorithms, which produce multiple conflict resolutions.
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VIII. Appendix

This appendix defines algorithms to compute 2-dimensional ground speed conflict prevention bands. The
mathematical development that led to these algorithms is presented in the related technical report.5

Definition 11 (det).
det(v,u) ≡ vxuy − vyux

Definition 12 (gs line).

gs line(s,vo,vi, ε) ≡
LET v = tangent line(s, ε) IN

IF det(vo,v) 6= 0 THEN

LET k =
det(vi,vo)
det(vo,v)

,

λ =
det(vi,v)
det(vo,v)

IN

IF λ > 0 AND k ≥ 0 THEN

λvo
ELSE

0

ENDIF

ELSE

0

ENDIF

11 of 12

American Institute of Aeronautics and Astronautics



Definition 13 (gs circle).

gs circle(s,vo,vi, ε) ≡
LET w = s− T vi,

a = T 2 v2
o,

b = 2T (w · vo),
c = w2 −D2 IN

IF discr(a, b, c) ≥ 0 THEN

LET λ = root(a, b, c, ε) IN

IF λ ≥ 0 THEN

LET v′ = λvo − vi IN

IF (s + T v′) · v′ ≤ 0 THEN

λvo
ELSE

0

ENDIF

ELSE

0

ENDIF

ELSE

0

ENDIF

Definition 14 (gs bands).

gs bands(s,vo,vi) ≡
gs[0] := ||gs line(s,vo,vi,−1)||;
gs[1] := ||gs line(s,vo,vi,+1)||;
gs[2] := ||gs circle(s,vo,vi,−1)||;
gs[3] := ||gs circle(s,vo,vi,+1)||;
gs[4] := min ground speed;

gs[5] := max ground speed;

sort(gs);

Go,i<T := ∅;
FOR EACH gsi, gsi+1 IN gs

LET λ =
gsi + gsi+1

2 ||vo||
,

v′o = (λvox, λvoy) IN

IF cd2d(s,v′o,vi) THEN

Go,i<T := Go,i<T ∪ (gsi, gsi+1);
ENDIF

RETURN Go,i<T ;
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